Independent detour transwersals in 3-deficient digraphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independent detour transwersals in 3-deficient digraphs

In 1982 Laborde, Payan and Xuong [Independent sets and longest directed paths in digraphs, in: Graphs and other combinatorial topics (Prague, 1982) 173–177 (Teubner-Texte Math., 59 1983)] conjectured that every digraph has an independent detour transversal (IDT), i.e. an independent set which intersects every longest path. Havet [Stable set meeting every longest path, Discrete Math. 289 (2004) ...

متن کامل

3-transitive Digraphs

Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A digraph D is 3-transitive if the existence of the directed path (u, v, w, x) of length 3 in D implies the existence of the arc (u, x) ∈ A(D). In this article strong 3-transitive digraphs are characterized and the structure of non-strong 3-transitive digraphs is described. The results are used, e.g...

متن کامل

Linear Sphericity Testing of 3-Connected Single Source Digraphs

It has been proved that sphericity testing for digraphs is an NP-complete problem. Here, we investigate sphericity of 3-connected single source digraphs. We provide a new combinatorial characterization of sphericity and give a linear time algorithm for sphericity testing. Our algorithm tests whether a 3-connected single source digraph with $n$ vertices is spherical in $O(n)$ time.

متن کامل

Cycles in 3-anti-circulant digraphs

A digraph D is a 3-anti-circulant digraph, if for any four distinct vertices x1, x2, x3, x4 ∈ V (D), x1 → x2 ← x3 → x4 implies x4 → x1. In this paper, we characterize the structure of 3-anti-circulant digraphs containing a cycle factor and show that the structure is very close to semicomplete and semicomplete bipartite digraphs. Laborde et al. conjectured that every digraph has an independent s...

متن کامل

Underlying graphs of 3-quasi-transitive digraphs and 3-transitive digraphs

A digraph is 3-quasi-transitive (resp. 3-transitive), if for any path x0x1 x2x3 of length 3, x0 and x3 are adjacent (resp. x0 dominates x3). César Hernández-Cruz conjectured that if D is a 3-quasi-transitive digraph, then the underlying graph of D, UG(D), admits a 3-transitive orientation. In this paper, we shall prove that the conjecture is true.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discussiones Mathematicae Graph Theory

سال: 2013

ISSN: 1234-3099,2083-5892

DOI: 10.7151/dmgt.1650